|
|
| 1. Zhu, D.-X.; Pan, K.-M.; Wu, Y.; Zhou, X.-Y.; Li, X.-Y.; Ren, Y.-P.; Shi, S.-R.; Yu, H.; Wei, S.-Z.; Wu, H.-H.; Yang, X.-S., Improved material descriptors for bulk modulus in intermetallic compounds via machine learning. Rare Metals 2023, 42 (7), 2396-2405. 2. Wu, H.-H.; Dong, L.-S.; Wang, S.-Z.; Wu, G.-L.; Gao, J.-H.; Yang, X.-S.; Zhou, X.-Y.; Mao, X.-P., Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Metals 2023, 42 (5), 1645-1655. 3. Wang, F.; Wu, H.-H.; Dong, L.; Pan, G.; Zhou, X.; Wang, S.; Guo, R.; Wu, G.; Gao, J.; Dai, F.-Z.; Mao, X., Atomic-scale simulations in multi-component alloys and compounds: A review on advances in interatomic potential. J. Mater. Sci. Technol. 2023, 165, 49-65. 4. Wang, F.; Dong, L.; Wu, H.-H.; Bai, P.; Wang, S.; Wu, G.; Gao, J.; Zhu, J.; Zhou, X.; Mao, X., Enhanced nanocrystalline stability of BCC iron via copper segregation. Progress in Natural Science: Materials International 2023, 33 (2), 185-192. 5. Jiao, M.; Lei, Z.; Wu, Y.; Du, J.; Zhou, X.-Y.; Li, W.; Yuan, X.; Liu, X.; Zhu, X.; Wang, S.; Zhu, H.; Cao, P.; Liu, X.; Zhang, X.; Wang, H.; Jiang, S.; Lu, Z., Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys. Nat. Commun. 2023, 14 (1), 806. 6. Zhou, X.-Y.; Zhu, J.-H.; Wu, Y.; Yang, X.-S.; Lookman, T.; Wu, H.-H., Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients. Acta Mater. 2022, 224, 117535. 7. Zhou, X.; Fu, H.; Zhu, J.-H.; Yang, X.-S., Atomistic simulations of the surface severe plastic deformation-induced grain refinement in polycrystalline magnesium: The effect of processing parameters. Journal of Magnesium and Alloys 2022, 10 (5), 1242-1255. 8. Qin, Y.; Yu, T.; Deng, S.; Zhou, X.-Y.; Lin, D.; Zhang, Q.; Jin, Z.; Zhang, D.; He, Y.-B.; Qiu, H.-J.; He, L.; Kang, F.; Li, K.; Zhang, T.-Y., RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13 (1), 3784. 9. Li, B.; Niu, C.-M.; Zhang, T.-L.; Chen, G.-Y.; Zhang, G.; Wang, D.; Zhou, X.-Y.; Zhu, J.-M., Advances of machining techniques for gradient structures in multi-principal-element alloys. Rare Metals 2022. 10. Dong, L.; Wang, S.; Wu, G.; Gao, J.; Zhou, X.; Wu, H.-H.; Mao, X., Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. Int. J. Hydrogen Energy 2022, 47 (46), 20288-20309. 11. Zhou, X.-Y.; Zhu, J.-H.; Wu, H.-H.; Yang, X.-S.; Wang, S.; Mao, X., Unveiling the role of hydrogen on the creep behaviors of nanograined α-Fe via molecular dynamics simulations. Int. J. Hydrogen Energy 2021, 46 (14), 9613-9629. 12. Zhou, X.-Y.; Wu, H.-H.; Zhu, J.-H.; Li, B.; Wu, Y., Plastic deformation mechanism in crystal-glass high entropy alloy composites studied via molecular dynamics simulations. Compos. Commun. 2021, 24, 100658. 13. Zhang, Z.; Xu, H.; Zhou, X.; Guo, T.; Pang, X.; Volinsky, A. A., Deformation Mechanisms of NiP/Ni Composite Coatings on Ductile Substrates. Coatings 2021, 11 (7). 14. Wu, B.; Fu, H.; Zhou, X.; Qian, L.; Luo, J.; Zhu, J.; Lee, W. B.; Yang, X.-S., Severe plastic deformation-produced gradient nanostructured copper with a strengthening-softening transition. Mater. Sci. Eng. A 2021, 819, 141495. 15. Fu, H.; Zhou, X.; Wu, B.; Qian, L.; Yang, X.-S., Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique. J. Mater. Sci. Technol. 2021, 82, 227-238. 16. Zhou, X.-Y.; Zhu, J.-H.; Wu, H.-H., Molecular dynamics studies of the grain-size dependent hydrogen diffusion coefficient of nanograined Fe. Int. J. Hydrogen Energy 2020, 46 (7), 5842-5851. 17. Zhou, X.-Y.; Yang, X.-S.; Zhu, J.-H.; Xing, F., Atomistic simulation study of the grain-size effect on hydrogen embrittlement of nanograined Fe. Int. J. Hydrogen Energy 2020, 45 (4), 3294-3306. 18. Pei, C.; Zhou, X.; Zhu, J.-H.; Su, M.; Wang, Y.; Xing, F., Synergistic effects of a novel method of preparing graphene/polyvinyl alcohol to modify cementitious material. Construction and Building Materials 2020, 258, 119647. 19. Li, K.; Zhou, X.; Nie, A.; Sun, S.; He, Y.-B.; Ren, W.; Li, B.; Kang, F.; Kim, J.-K.; Zhang, T.-Y., Discovering a First-Order Phase Transition in the Li–CeO2 System. Nano Lett. 2017, 17 (2), 1282-1288. 20. Zhou, X.-Y.; Huang, B.-L.; Zhang, T.-Y., Size- and temperature-dependent Young's modulus and size-dependent thermal expansion coefficient of thin films. Phys. Chem. Chem. Phys. 2016, 18 (31), 21508-21517. 21. Zhou, X.-Y.; Ren, H.; Huang, B.-L.; Zhang, T.-Y., Surface-induced size-dependent ultimate tensile strength of thin films. Phys. Lett. A 2015, 379 (5), 471-481. 22. Zhou, X. Y.; Ren, H.; Huang, B. L.; Zhang, T. Y., Size-dependent elastic properties of thin films: surface anisotropy and surface bonding. Science China 2014, 57 (4), 680-691.
|