|
|
|
| l 增材制造 由于激光焊接与激光粉末床增材制造(L-PBF)技术有一些共同的特点,例如熔池冷却时间短、冷却速度快,因此我开始专注于研究L-PBF技术的“工艺-组织-性能”关系。结合原位合金化、在线监测、机器学习、多尺度模拟等方法,已制备出高/中熵合金、高强度铝合金、钛合金。这些研究成果为制造高强度、高延展性金属合金/复合材料开辟了新途径,对学术界和工业界具有重要价值。 代表作: Shaohua Yan, Xipei He, Manja Krüger, Yusen Li, Qiang Jia, Additive manufacturing of a new non-equiatomic high-entropy alloy with exceptional strength-ductility synergy via in-situ alloying, Materials & Design 238 (2024) 112676. Shaohua Yan*, Zhaosong Zhang, Qinghua Qin, Additive manufacturing of strong and ductile NiCoCr medium-entropy alloy via in-situ alloying nanoparticles, Materials Science and Engineering: A 941 (2025) 148616. l 微纳米力学 国际上,首次采用微纳米力学实验对焊接接头的单晶力学行为进行研究,从原理上揭示接头的变形机理和强韧化机制,为调控接头力学行为提供基础理论参考。通过多尺度试验和晶体塑性有限元模拟相结合的方式,为研究焊接结构的力学行为提供新的研究思路。 代表作: (1)Hong Li, Yusen Li, Yuan Nie, Shaohua Yan*,Small-scale mechanical properties and deformation mechanisms of a laser welded CrCoNi medium-entropy alloy joint, Materials Science and Engineering: A 855 (2022) 143959. (JCR Q1, IF=6.1) (2)Shaohua Yan, Haiyang Zhou, Bobin Xing, Shuang Zhang, Li Li, Qing .H Qin, Crystal plasticity of fusion zone in a hybrid laser welded Al alloys joint: from nanoscale to macroscale, Materials and Design 160 (2018) 313-324. (JCR Q1, IF=7.6)
l 先进合金激光焊接接头组织与性能的定量关系 该研究领域涉及使用 EBSD 和 TEM 等高分辨率电子显微镜对接头的微观组织结构进行多尺度表征。机械性能包括拉伸强度、疲劳强度和耐腐蚀性。研究结果揭示了微观结构与性能的定量关系,可用于学术界和工业界选择先进的焊接工艺来制造具有高可靠性和耐用性的工程部件。
代表作: Shaohua Yan, Hui Chen, Zongtao Zhu, Guoqing Gou, Hybrid laser-metal inert gas welding of Al-Mg-Si alloys joint: microstructure and mechanical properties, Materials & Design 61 (2014) 160-167. (JCR Q1, IF=7.6) l 原位调控铝合金激光复合焊接接头的组织与性能 在攻读博士学位期间,我研发了一种新颖的原位焊接方法来调控激光电弧焊接铝合金接头的微观结构和机械性能。通过调整填充材料的化学元素,在焊接过程中改变接头的晶粒尺寸、位错密度、析出物等微观结构,从而提高机械性能。此外,通过工艺参数优化,显著地减少了气孔等缺陷,有利于提升接头的抗疲劳性能。 代表作: Shaohua Yan, Bobin Xing, Haiyang Zhou, Yi Xiao, Qing. H Qin, Hui Chen, Effect of filling materials on the microstructure and properties of hybrid laser welded Al-Mg-Si alloys joints, Materials Characterization 144 (2018) 205-218. (JCR Q1, IF=4.8)
|
|
|
|
| 2025 1. Shaohua Yan*, Zhaosong Zhang, Qinghua Qin, Additive manufacturing of strong and ductile NiCoCr medium-entropy alloy via in-situ alloying nanoparticles, Materials Science and Engineering: A 941 (2025) 148616. 2. Yan Zhu, Yusen Li, Zhongwei Yan, Changhui Song, Jindong Tian, Shaohua Yan*, Achieving exceptional strength-ductility synergy in a 3D-printed CrCoNi medium-entropy alloy with machine-learning assistance, Materials Characterization 223 (2025) 114990. 3. Guanming Xie, Weixin Ma, Yueqiang Zhang, Sanhong Wang, You Li, Biao Hu, Shaohua Yan, Yu Fu, Qifeng Yu, Keyhole morphology monitoring in laser welding using optical coherence tomography, Chinese Optics Letters 23 (2025) 031201. 4. Shaohua Yan, Zonghan Xie, Qing-Hua Qin, Unlocking theoretical strength and ductility in sapphire nanopillars: Insights into size-dependent deformation mechanisms, Journal of Alloys and Compounds 1010 (2025) 177183.
2024 5. Hongmei Zhou, Shaohua Yan*, Zhongyin Zhu, Enhanced Strength–Ductility Combination in Laser Welding of CrCoNi Medium-Entropy Alloy with Ultrasonic Assistance, Metals 14 (2024) 971. 6. Hong Li, Shaohua Yan*, Yu Fu*, Data-fusion for in-situ monitoring and molten state identification during LPBF of NiCoCr medium-entropy alloy, Scientific Reports 14 (2024) 14697. (JCR Q1, IF=3.8) 7. Shaohua Yan, Xipei He, Manja Krüger, Yusen Li, Qiang Jia, Additive manufacturing of a new non-equiatomic high-entropy alloy with exceptional strength-ductility synergy via in-situ alloying, Materials & Design 238 (2024) 112676. (JCR Q1, IF=7.6)
2023 8. Shaohua Yan, Yuan Nie, Anna Paradowska, Effect of size and orientation on the nano/microscale mechanical property and deformation behavior of CrCoNi medium-entropy alloy, Materials & Design, 235 (2023)112387. (JCR Q1, IF=7.6) 9. Shaohua Yan, Xipei He, Zhongyin Zhu, Hydrogen embrittlement of CrCoNi medium-entropy alloy with millimeter-scale grain size: an in-situ hydrogen charging study, Entropy 25 (2023), 673. (JCR Q2, IF=2.1) 10. Shaohua Yan, Thomas D Bennett, Weipeng Feng, Zhongyin Zhu, Dingcheng Yang, Zheng Zhong, Qing H Qin, Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass, Nanoscale 15 (2023) 8235-8244. (JCR Q1, IF=5.8)
2022 11. Hong Li, Yusen Li, Yuan Nie, Shaohua Yan*,Small-scale mechanical properties and deformation mechanisms of a laser welded CrCoNi medium-entropy alloy joint, Materials Science and Engineering: A 855 (2022) 143959. (JCR Q1, IF=6.1) 12. Shaohua Yan, Qing H Qin, Zheng Zhong, Tailoring small-scale plasticity and deformation behavior of nanotwined-copper micropillars via microstructures, Journal of Applied Physics, 132 (2022) 135102. (JCR Q2, IF=2.7) 13. Shaohua Yan, Haiyang Zhou, Zhongyin Zhu, Yu Fu, Jindong Tian, High strength-ductility synergy in a laser welded dissimilar joint of CrCoNi medium-entropy alloy and stainless steel, Materials Science and Engineering: A 840 (2022) 142854. (JCR Q1, IF=6.1)
2021 14. Shaohua Yan, Ahmad Nawaz, Bilal Islam, Qing-Hua Qin, Weiguo Mao, Yaogen Shen, Ishaq Ahmad, Iftikhar Hussain, Elastic-plastic deformation behavior of sapphire M-plane under static loading using nano-indentation, Ceramics International 47(2021) 23528-23538. (JCR Q1, IF=5.1) 15. Qiang Jia, Guisheng Zou, Hongqiang Zhang, Wengan Wang, Hui Ren, Zhanwen A, Zhongyang Deng, Shaohua Yan, Daozhi Shen, Lei Liu, Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging, Applied Surface Science 554 (2021) 149579. (JCR Q1, IF=6.3) 16. Zhongyin Zhu, Shaohua Yan*, Hui Chen, Guoqing Gou*, Unprecedented combination of strength and ductility in laser welded NiCoCr medium entropy alloy joints, Materials Science and Engineering: A 803 (2021) 140501. (JCR Q1, IF=6.1) 发明专利(部分): 1.闫少华,聂媛;一种 高 强 高 韧MOF 玻 璃 的 制 备 方 法 及 其 所 制 备 的 M O F 玻 璃. 授权专利号: ZL202111044400.9 2.闫少华,聂媛;一种高强韧非等原子比 FeCoCrNi 高熵合金的增材制造方法. 申请号:202310725553.2 3.闫少华,聂媛,何锡沛;一种具有优异高温力学性能的纳米 TiC 增强 316L 不锈钢. 申请号:202411358077.6 4.朱燕,闫少华; 一种激光选区熔化技术成型件力学性能预测方法. 申请号:202510136770.7 5.闫少华,朱燕,李勤兵,郑燕,秦庆华, 一种基于机器学习调控 SLM 增材制造中飞溅缺陷的方法. 申请号:202510391091.4 6.袁定华,闫少华,张照松,秦庆华, 一种纳米 TiB2 增强 CoCrNi 中熵合金及其制备方法, 申请号:202510561104.8. |