副教授

SMBU

NIKITIN ALEXEY

作者:    审核:    发布时间:2021-07-20    阅读次数:

Nikitin Alexey Antonovich


Date of birth: 14 February 1983.

Address: Moscow.

Email: nikitin@cs.msu.ru, aanikitin@hse.ru

Marital status: married, two daughters, son.

I. Education

1. 2000 - 2005. Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. 2005 - 2008 postgraduate study, MSU, Computational Mathematics and Cybernetics department;

3. 2008 (april) Candidate of physical and mathematical Sciences, "Dierential equations"(01.01.02). Thesis topic: "The Third boundary condition in boundary control problems for the oscillation

equation".

II. Working Experience

1. from may 2008 to October 2013, assistant at the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. since October 2013, associate Professor of the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

3. since September 2009, associate Professor of the Department of Higher mathematics At the faculty of economic Sciences, Higher School of Economics;

III. Publications

1. Nikitin A. A. Boundary control of an elastic force at one end of a string // Doklady Mathematics. 2006. Vol. 73, no. 1. P. 77-79;

2. Nikitin A. A. Optimization of boundary control produced by the third boundary condition // Doklady Mathematics.  2007.  Vol. 76, no. 3. P. 945947;

3. Nikitin A. A. On the mixed problem for the wave equation with the third and rst boundary conditions // Dierential Equations.  2007.  Vol. 43, no. 12. P. 17331741;ˆ Nikitin A. A. Boundary control of the third boundary // Automation and Remote Control. 2007.  Vol. 68, no. 2. P. 320326;

4. Nikitin A. A., Kuleshov A. A. Optimization of the boundary control induced by the third boundary condition // Dierential Equations.  2008.  Vol. 44, no. 5. P. 701711;

5. A. A. Davydov, V. I. Danchenko, and A. A. Nikitin, Integral equation for stationary distributions of biological communities, Problems of Dynamic Control (Fak. Vychisl. Mat. Mat. Fiz. Mosk. Gos. Univ., Moscow, 2009), pp. 1529 [in Russian];

6. Nikitin A. A. Optimal boundary control of string vibrations by a force under elastic xing // Dierential Equations.  2011.  Vol. 47, no. 12. P. 17961805;

7. Nikitin A. A. On the existence and uniqueness of a generalized solution of the mixed problem for the wave equation with the second and third boundary conditions // Dierential Equations.  2013.  Vol. 49, no. 5. P. 645653;

8. On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data // Progress in Partial Dierential Equations, Springer Proceedings in Mathematics & Statistics, chapter 10, april, 2013, p.223-238;

9. Bodrov A. G., Nikitin A. A. Qualitative and numerical analysis of an integral equation arising in a model of stationary communities // Doklady Mathematics.  2014. Vol. 89,

no. 2. P. 210213;

10. Bodrov A. G., Nikitin A. A. Examining the biological species steady-state density equation in spaces with dierent dimensions // Moscow University Computational Mathematics and Cybernetics.  2015.  Vol. 39, no. 4. P. 157162;

11. Kalistratova A. V., Nikitin A. A. Study of Dieckmann's equation with integral kernels having variable kurtosis coe‑cient // Doklady Mathematics.  2016.  Vol. 94, no. 2.  P. 574577;

12. Nikitin A. A., Savostianov A. S. Nontrivial stationary points of two-species self-structuring communities // Moscow University Computational Mathematics and Cybernetics. 2017.

 Vol. 41, no. 3. P. 122129;

13. Nikitin A. A., On the closure of spatial moments in the biological model, and the integral equations to which it leads // International Journal of Open Information Technologies.  2018.  Ò. 6,  10.  Ñ. 18;

14. Nikitin A. A., Nikolaev M. V. Equilibrium integral equations with kurtosian kernels in spaces of various dimensions // Moscow University Computational Mathematics and Cybernetics. 2018.  Vol. 42, no. 3. P. 105113;ˆ Nikolaev M. V., Nikitin A. A. The Leray-Schauder principle applied to the study of a nonlinear integral equation // Dierential Equations.  2019.  Vol. 55, no. 9. P. 11641173.

15. Nikolaev M. V., Nikitin A. A. On the existence and uniqueness of the solution of a nonlinear integral equation // Doklady Mathematics.  2019.  Vol. 100, no. 2. P. 485487.

16. Galkin E. G., Zelenkov V. K., Nikitin A. A. Computer simulations and numerical methods in two-species models of the spatial community // International Journal of Open Information Technologies.  2019.  Vol. 7, no. 12. P. 1823;

17. Galkin E. G., Nikitin A. A. Stochastic geometry for population-dynamic modeling: A Dieckmann model with immovable individuals // Moscow University Computational Mathematics and Cybernetics.  2020.  Vol. 44, no. 2. P. 6168.

18. Karpov A. D., Klepov V. Y., Nikitin A. A. On mathematical visualization in education // Communications in Computer and Information Science.  2020.  Vol. 1140, no. 1. P. 1127; Participant of several dozens of International and all-Russian congresses and seminars on topics related to optimal control, dierential equations in ordinary and partial derivatives, and mathematical

modeling.

IV. Professional interests

1. Optimal control of dynamic systems;

2. Mathematical biology;

3. The problems of scientometrics;

4. Problems of mathematical education, information technologies in higher education;

关闭

地址:深圳市龙岗区大运新城国际大学园路1号

电话:0755-28323024

邮箱:info@smbu.edu.cn

深圳北理莫斯科大学版权所有 - 粤ICP备16056390号 - 粤公网安备44030702002529号

返回顶部